
Complexity Issues in Data Intensive
High End Computing

Rob Ross

Mathematics and Computer Science Division
Argonne National Laboratory

rross@mcs.anl.gov

What’s coming?

• Required I/O bandwidth is going up
– Coordination (metadata) is the challenge
– Tech. like NAND flash may mitigate this problem

• Spindle counts will go up to match bandwidth needs…
– And network demands increase as well

• There will be more concurrent streams…
– Unless we stop using POSIX (or POSIX-like) API

• The number of failure domains is increasing

New architectures and algorithms will be needed
to meet these demands.

What have we done lately?

• Frangipani/Petal (1996) – virtual block devices
• Galley (1996) – subfiles (object-based storage)
• NFSv3 (1995) – best standard protocol to date
• POSIX I/O API (1996) – consistency semantics
• MPI-IO (1998) – standard parallel I/O API
• RAID (1988) – tolerating disk failures

We’re mostly working with decade-old
ideas.

What can we do?

• Open up the design space
– Give storage developers more options for solutions

• Leverage hierarchy in I/O systems
– Hide some complexity from the storage system

• Build parallel storage solutions more quickly
– It takes us 3-4 years to create a robust PFS
– That’s why we don’t create truly novel solutions

Opening up the design space

• Quit catering to users’ whims
– Give them better tools (APIs) instead

• POSIX is dead
– Long live POSIX

• File-per-process is not a viable I/O
model
– We still spend time on this?

• Explore other organizations and
consistency semantics
– Can we learn from Google, physics data

stores, peer-to-peer?

Figure 1: Possibly most
popular tool for coding I/O
inside parallel scientific
applications

Leveraging hierarchy in the I/O system

• Partitioned systems becoming
more common

• Intermediate nodes can
aggregate operations
– Much easier if application uses collective I/O
– Result is fewer concurrent streams and more

sequential access patterns

Common infrastructure for I/O forwarding
could be shared across file systems.

���

���

���

��������	
��
����
���	
�

�����

���	
�

��

��
��	
�

Building parallel I/O systems quickly

• We build most everything from scratch
– CFS did well to use Portals as their transport

• (Yes, Rob just complimented Lustre.)

– Roger’s example of rebuilding heartbeat/quorum

• Need common components for system SW
– High-level messaging layer
– Fault monitoring/reporting infrastructure
– Object storage API for commodity disks

Summary

• Free developers to explore new designs
Wanted: Catchy name for enhanced POSIX

• Leverage the inherent hierarchy in HEC
architectures to manage node counts
– Build portable infrastructure to do this

• Develop and adopt common components to
decrease time to solution

Real™ Open Source is critical.

